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The electrophilic addition of aldehydes to allenylstan-
nanes has become an increasingly useful entry to ho-
mopropargyl alcohols.1 Although (γ-alkoxyallenyl)stan-
nanes thus suggest themselves as precursors to alkynediol
derivatives, only limited reports of their preparation2 and
use in this regard3 are extant. The analogous (γ-
siloxyallenyl)stannanes may be expected to serve in a
similar capacity, but to our knowledge their use is
currently unknown.
We recently reported that (R-siloxypropargyl)stan-

nanes (1a-e) were available by alkynylation-silylation
of acetyltriisopropylstannane4 (1f, this work). It has long
been known that propargylstannanes may be isomerized
to allenylstannanes under thermal,5,6 acidic,5,7 or nucleo-
philic5,8 conditions, although the position of equilibrium
may be influenced by steric factors. Since propargyl
ethers can also be equilibrated to favor the formation of
allenyl ethers,9 it seemed possible that a synthetically
useful isomerization of 1 into the corresponding allenes

2 could be effected. In the event, it was found that short-
term (10-30 min) thermolysis of 1 at ca. 200 °C sufficed
for this conversion, with the results obtained outlined in
Table 1. A minor competing reaction which became
noticeable at the longer reaction times was a degradation
to form, in part, 1-(triisopropylstannyl)-1-[(trimethylsi-
lyl)oxy]ethene.10 All acetylenes underwent essentially
complete conversion (1H NMR analysis11) under the
listed conditions except for 1b,c, which still survived to

the extent of 5-10% after 30 min. Although further
heating of these compounds to complete disappearance
of 1 was not carried out, a sample of 2b heated at 210 °C
for 30 min showed no detectable amount of 1b, indicating
that equilibrium lay far in the direction of the allene.
The assignment of the allenic structure to 2 followed

from their IR and 13C NMR spectra,12 the latter showing
the characteristic low field (ca. 200 ppm) absorption of
the central carbon atom. Confirmatory of overall assign-
ments were some clearly seen tin satellites associated
with the terminal allenyl carbons and the isopropylstan-
nyl group. Thus, for example, 2f displayed 1J(119Sn,Cd)
) 292 Hz, 1J(117Sn,Cd) ) 279 Hz (both centered at δ
109.1), 3J(Sn,Cd) ) 41 Hz13 (centered at δ 119.6) and
1J(119Sn,C) ) 342 Hz, 1J(117Sn,C) ) 327 Hz (both centered
at δ 16.6) in the 13C NMR spectrum. These values are
consistent with known data for allenylstannanes14 and
for isopropyltin compounds,15 respectively. The 1H NMR
spectra of all 2 displayed tin satellites centered at the
(allenyl)methyl group absorption, which for 2f was at δ
1.85 with 5J(Sn,H) ) 16.6 Hz.13

Several experiments were carried out to ascertain that
the rearrangement of 1 to 2was not a free radical process
possibly initiated by thermally induced stannyl radical
formation.16 Thus, a sample of 1b in excess bromoben-
zene was heated in a sealed tube at 210 °C for 20 min.
Complete conversion to 2b was observed, with no indica-
tion of bromotriisopropylstannane formation17 (or any
other product). Similarly, a sample of 1c and excess 1,2-
dibromoethane was heated in a sealed tube at 200 °C for
30 min to afford only 2c, with no bromotriisopropylstan-
nane or ethylene in evidence.18 The intermediacy of
stannyl radicals is thus contraindicated. Extant studies
by LeQuan and Guillerm led to the conclusion that (only)
terminally unsubstituted propargylstannanes thermally
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Table 1. Thermolysis of 1a into 2

2 time (min) temp (°C) yield (%)b purity (%)c

a 10 200 97 88
b 30 210 82 85d
c 30 210 92 88d
d 20 200 65 90
e 20 200 84 98
f 15 200 83 98
a Contained 5-10% of RCtCSn(iPr)3 and/or CH2dC-

(OTMS)Sn(iPr)3; see ref 4. b Isolated yield from Kugelrohr distil-
lation. c By 1H NMR analysis. d Contained 5-10% unreacted 1.
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rearranged in a bimolecular process which nevertheless
exhibited apparent first-order kinetics.5,6 In addition,
electron-donor solvents were found to accelerate the
conversion, perhaps via a solvent-substrate complex
entailing a pentacoordinate tin intermediate.5,8 Consis-
tent with these and our results with terminally substi-
tuted propargylstannanes 1 would be the possibility that
the thermal rearrangement proceeds by way of a 1,3-
sigmatropic rearrangement within a pentacoordinate tin
complex of 1with itself (acetylenic π f Sn).19 The driving
force for the rearrangement of 1 (over terminally unsub-
stituted propargylstannanes) may arise from the stability
of allenyl ethers9 and the relief of crowding at the
quaternary propargyl terminus.

Experimental Section

General. Starting acetylenes (1) were prepared as reported;4
characterization data for these materials are given there and
below. 1H NMR (200 MHz) and 13C NMR (50.3 MHz) spectra of
2 were obtained in CDCl3 and 1:3 v/v C6D6-CCl4, respectively
(the latter was used to avoid C6D6 saturation with dilute
samples; some samples of 2 in CDCl3 were not completely stable
over the ca. 18 h accumulation period). IR spectra were obtained
on neat films. Kugelrohr oven temperatures are listed in lieu
of boiling points (“Kd” ) Kugelrohr distillation). GLPC of 1 was
often accompanied by partial isomerization to 2. Employing
injection port and TC detector temperatures below 200 °C
minimized or eliminated the rearrangement. Except where
noted, analytical data were obtained on GLPC-collected samples.
1-(Trimethylsilyl)-3-(triisopropylstannyl)-3-[(trimethyl-

silyl)oxy]-1-butyne (1a).4 Anal. Calcd for C19H42OSi2Sn: C,
49.46; H, 9.18. Found: C, 49.43; H, 9.10.
2-(Triisopropylstannyl)-2-[(trimethylsilyl)oxy]-3-oc-

tyne (1b). Kd 125 °C (0.1 mmHg). IR: 2200 (vw) cm-1; 1H
NMR: δ 0.15 (s, 9H), 0.88 (m, 3H), 1.1-1.7 (m, 25H), 1.67 (s,
3H), 2.22 (m, 2H). 13C NMR (CDCl3): δ 2.4, 13.6, 16.4, 19,0,
22.1, 22.3, 31.0, 31.4, 66.9, 86.9, 88.2. Anal. Calcd for C20H42-
OSiSn: C, 53.94; H, 9.51. Found: C, 53.69; H, 9.77.
5,5-Dimethyl-2-(triisopropylstannyl)-2-[(trimethylsilyl)-

oxy]-3-hexyne (1c). Kd 120 °C (0.1 mmHg). IR: 2220 (vw)
cm-1; 1H NMR: δ 0.14 (s, 9H), 1.17 (s, 9H), 1.2-1.7 (m, 21H),
1.65 (s, 3H). 13C NMR (CDCl3): δ 2.5, 16.3, 22.3, 27.7, 31.1,
31.5, 66.6, 85.6, 95.9. Anal. Calcd for C20H42OSiSn: C, 53.94;
H, 9.51. Found: C, 54.14; H, 9.44.
1-Phenyl-4-(triisopropylstannyl)-4-[(trimethylsilyl)oxy]-

2-pentyne (1d). Kd 160 °C (0.05 mmHg). IR: 2200 (vw) cm-1;
1H NMR: δ 0.14 (s, 9H), 1.1-1.7 (m, 21H), 1.73 (s, 3H), 3.65 (s,
2H), 7.2-7.4 (m, 5H). 13C NMR (CDCl3): δ 2.3, 16.4, 22.2, 25.7,
31.1 66.8, 85.6, 89.2, 126.3, 128.0, 128.3, 137.3. Anal. Calcd for
C23H40OSiSn: C, 57.63; H, 8.41. Found: C, 57.72; H, 8.57.
5-Methyl-2-(triisopropylstannyl)-2,5-bis[(trimethylsilyl)-

oxy]-3-hexyne (1e). Kd 145 °C (0.06 mmHg). IR: 2200 (vw)
cm-1; 1H NMR: δ 0.16 (s, 9H), 0.17 (s, 9H), 1.1-1.7 (m, 21H),
1.47 (s, 6H), 1.72 (s, 3H). 13C NMR (CDCl3): δ 2.1, 2.4, 16.5,
22.3, 30.5, 33.0, 66.5, 67.0, 89.1, 92.7. Anal. Calcd for
C22H48O2Si2Sn: C, 50.86; H, 9.31. Found: C, 50.67; H, 9.44.
1,1-Diethoxy-4-(triisopropylstannyl)-4-[(trimethylsilyl)-

oxy]-2-pentyne (1f). A solution of 0.26 g (2.0 mmol) of 3,3-
diethoxy-1-propyne in 7 mL of ethyl ether was treated at -78
°C with 0.80 mL of 2.5 N (0.20 mmol) n-butyllithium in hexane
(the metalated acetylene is unstable at 0 °C).4 After 10 min,
0.60 g (0.21 mmol) of acetyltriisopropylstannane was added
dropwise by syringe. After an additional 15 min at -78 °C, 0.40
mL (2.7 mmol) of (trimethylsilyl)imidazole was added and the
mixture allowed to warm to 25 °C over 45 min. A pentane-
NaHCO3 workup was followed by drying (MgSO4) and Kugelrohr
distillation to give, after a 0.14 g forerun (Kd 100 °C/0.05 mmHg),
0.57 g (58%) of 1f (Kd 135-140 °C/0.05 mmHg). IR: 2220 (w)
cm-1. 1H NMR: δ 0.17 (s, 9H), 1.21 (t, J ) 7.2 Hz, 3H), 1.22 (t,

J ) 7.2 Hz, 3H), 1.3-1.7 (m, 21H), 1.75 (s, 3H), 3.5-3.85 (m,
4H), 5.33 (s, 1H). 13C NMR (1:3 v/v C6D6-CCl4): δ 2.7, 15.4,
16.9, 22.6, 30.9, 60.4, 60.5, 66.3, 84.8, 91.5, 92.1. Anal. Calcd
for C21H44O3SiSn: C, 51.33; H, 9.03. Found: C, 51.37; H, 9.12.
The following were isolated from the forerun.
1-(Triisopropylstannyl)-1-[(trimethylsilyl)oxy]ethene.

IR: 1570 cm-1. 1H NMR: δ 0.18 (s, 9H), 1.1-1.6 (m, 21H), 4.23
(d, J ) 0.6 Hz), 1H), 4.94 (d, J ) 0.6 Hz, 1H). Anal. Calcd for
C14H32OSiSn: C, 46.55; H, 8.93. Found: C, 46.55; H, 9.01.
3,3-Diethoxy-1-(triisopropylstannyl)propyne. 1H NMR:

δ 1.1-1.7 (m, 21 H), 1.24 (t, J ) 7.2 Hz, 6H), 3.53-3.86 (ABX3
pattern, 4H), 5.28 (s, 1H). Anal. Calcd for C16H32O2Sn: C, 51.23;
H, 8.60. Found: C, 51.04; H, 8.75].
Typical Procedure for the Formation of 2. 5-Methyl-4-

(triisopropylstannyl)-2,5-bis[(trimethylsilyl)oxy]-2,3-hexa-
diene (2e). A fused three-bulb Kugelrohr insert was charged
with 0.44 g of 1e containing as impurity 5% (0.02 g) of
1-(triisopropylstannyl)-1-[(trimethylsilyl)oxy]ethene. The insert
was placed into the Kugelrohr oven at a 45° angle for reflux and
heated under rotation at 200 °C for 20 min under Ar. After
cooling, interior surfaces were washed down with hexane into
the terminal bulb and evaporated. The residue was Kugelrohr
distilled to give fractions at 105 °C (0.05 mmHg) (0.073 g) and
145 °C (0.05 mmHg) (0.37 g) (84% of analytically pure 2e)
uncontaminated by the ethene (1H NMR analysis). (The forerun
contained 50% (0.04 g) of the ethene.) IR: 1930 (w) cm-1. 1H
NMR: δ 0.12 (s, 9H), 0.16 (s, 9H), 1.37 (s, 3H), 1.38 (s, 3H), 1.1-
1.6 (m, 21H), 1.82 (s, 3H). 13C NMR: δ 1.0, 2.6, 17.4, 22.4, 22.7,
31.4, 32.3, 77.9, 120.1, 121.9, 195.5. Anal. Calcd for C22H48O2-
Si2Sn: C, 50.86; H, 9.31. Found: C, 51.03; H, 9.16.
1-(Triisopropylstannyl)-1-(trimethylsilyl)-3-[(trimethyl-

silyl)oxy]-1,2-butadiene (2a). Kd 125 °C (0.1 mmHg). IR:
1920 (vw) cm-1. 1H NMR: δ 0.10 (s, 9H), 0.15 (s, 9H), 1.1-1.6
(m, 21H), 1.81 (s, 3H). 13C NMR: δ 0.6, 1.0, 16.9, 21.2, 22.5,
102.2, 115.0, 213.3. Anal. Calcd for C19H42OSi2Sn: C, 49.46; H,
9.18. Found: C, 49.50; H, 9.36.
4-(Triisopropylstannyl)-2-[(trimethylsilyl)oxy]-2,3-octa-

diene (2b). Kd 130 °C (0.08 mmHg). IR: 1925(w) cm-1. 1H
NMR: δ 0.15 (s, 9H), 0.88 (t, 3H), 1.1-1.6 (m, 25H), 1.81 (s,
3H), 2.15 (m, 2H). 13C NMR: δ 0.8, 14.4, 16.1, 22.4, 22.5, 22.9,
32.0, 36.6, 107.5, 118.9, 200.0. Anal. Calcd for C20H42OSiSn: C,
53.94; H, 9.51. Found: C, 53.86; H, 9.56.
5,5-Dimethyl-4-(triisopropylstannyl)-2-[(trimethylsilyl)-

oxy]-2,3-hexadiene (2c). Kd 120 °C (0.1 mmHg). IR: 1930
(w) cm-1. 1H NMR: δ 0.16 (s, 9H), 1.05 (s, 9H), 1.1-1.6 (m,
21H), 1.81 (s, 3H). 13C NMR: δ 1.1, 17.2, 22.5, 31.5, 37.0, 119.3,
119.6, 196.5 (quaternary tert-butyl carbon unseen). Anal. Calcd
for C20H42OSiSn: C, 53.94; H, 9.51. Found: C, 53.90; H, 9.74.
1-Phenyl-2-(triisopropylstannyl)-4-[(trimethylsilyl)oxy]-

2,3-pentadiene (2d). Kd 160 °C (0.05 mmHg). IR: 1930 (vw)
cm-1. 1H NMR: δ 0.09 (s, 9H), 1.05-1.6 (m, 21H), 1.83 (s, 3H),
3.3 (AB pattern, J ) 18 Hz, 2H), 7.2-7.3 (m, 5H). 13C NMR: δ
0.6, 16.2, 21.9, 22.4, 43.5, 106.5, 118.9, 126.5, 128.4, 129.4, 140.4,
202.0. Anal. Calcd for C23H40OSiSn: C, 57.63; H, 8.41. Found:
C, 57.60; H, 8.54.
1,1-Diethoxy-2-(triisopropylstannyl)-4-[(trimethylsilyl)-

oxy]-2,3-pentadiene (2f). Kd 140 °C (0.05 mmHg). IR: 1940
(vw) cm-1. 1H NMR: δ 0.18 (s, 9H), 1.19 (t, J ) 7.2 Hz, 3H),
1.20 (t, J ) 7.2 Hz, 3H), 1.1-1.7 (m, 21H), 1.85 (s, 3H), 3.6 (m,
4H), 4.88 (s, 1H). 13C NMR: δ 0.6, 15.5, 15.6, 16.6, 21.7, 22.4,
60.7, 62.6, 104.7, 109.1, 119.6, 202.0. Anal. Calcd for C21H44O3-
SiSn: C, 51.33; H, 9.03. Found: C, 51.49; H, 9.11.
Rearrangement of 1b in Bromobenzene. A mixture of

29 mg (0.052 mmol) of 1b (glpc-collected; contained 20% of 2b)
and 20 µL (0.19 mmol) of bromobenzene was sealed in a melting
point tube and held at 210 °C for 20 min. Glpc and 1H NMR
analysis of this sample showed only the presence of 2b and
bromobenzene.
Rearrangement of 1c in 1,2-Dibromoethane. A 1:1 (v/v)

mixture of GLPC-collected 1c (2c content < 5%) and 1,2-
dibromoethane was sealed in a melting point tube and held at
200 °C for 30 min. GLPC and 1H NMR analysis of this sample
showed only the presence of 2c and 1,2-dibromoethane.

JO971440K
(19) This would correspond to the molecularity associated with “A

+ A f A + B”.
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